PARALLEL SPATIAL ENUMERATION OF IMPLICIT SURFACES USING
INTERVAL ARITHMETIC FOR OCTREE GENERATION AND ITS DIRECT
VISUALIZATION

Nilo Stolte’ and Arie Kaufman*
{stolte|ari}@cs.sunysb.edu

tSchool of Computer Science & Eletronic Systems

Kingston University

Penrhyn Road, Kingston upon Thames
Surrey KT1 2EE England

fComputer Science Department

State University of New York at Stony Brook
Stony Brook, NY 11794-4400 U.S.A.

ABSTRACT

This article presents a new parallel method for
implicit surface voxelization - the determination of
which cells of a regular grid in 3-space intersect the
zero-set of an implicit function. The serial version of
the method uses interval arithmetic to rapidly prune
regions of space where the surface does not lie, and a
novel octree generation/storage scheme for recording
the voxels the surface meets. In the parallelization,
good speedups on up to 7 processors are achieved,
although the serial version is also very efficient. The
parallelization is accomplished through a master-slave
scheme with dynamic load-balancing.

We also describe a method for rendering voxels
directly. This method is effective when the voxels are
small compared to pixels, hence is appropriate for
very high-density voxel grids.

Even though an octree is used in this paper, the
algorithm can also be used for 3D grids or other cho-
sen data structures. This flexibility arrives from the
fact that the voxels storage is independent of the sub-
division. Once a voxel is produced, its storage is ac-
complished by using the voxel’s coordinates only.

Key Words: Implicit Surfaces, Voxel, Voxelization,
Spatial Recursive Subdivision, Octree, Spatial Enu-
meration, Visualization.

1. INTRODUCTION

The transformation of geometric surfaces into voxels
is a significant research topic for Volume Visualiza-
tion. It allows mixing geometric with volumetric data

into the same volume. Its use is very popular for ac-
celerating Ray-Tracing [SC95, YCK92]. For paramet-
ric surfaces the parametric space can be subdivided
recursively to produce polygons, while for implicit
surfaces the three-dimensional space can be subdi-
vided to produce voxels. Space recursive subdivision
is an elegant way to produce efficient implicit sur-
faces voxelization. Other advantages are: simplicity
to deal with manifold objects, no need for clipping,
low algorithm complexity and facility to classify re-
gions inside and outside the surface. Octrees are nat-
ural data structures to store volumes whose interior
is homogeneous or empty, and to avoid representing
the voxels outside a surface.

Although octrees are not natural candidates for
parallelization, good algorithms exist addressing this
subject. One example that particularly fits our prob-
lem of surface voxelization is [BFG94]. This algo-
rithm exhibits fairly good results with up to 4 proces-
sors. For more than 4 processors the results are not as
satisfying. As in [BFG94], we use a shared-memory
machine and get approximately the same behavior,
but with better results.

Unfortunately, the greatest limitation of the algo-
rithm in [BFG94] is the assumption that the contain-
ment of a surface into an octant can be known at any
moment. For certain subdivision algorithms [KB8&9,
Duf92, Tau94, SC97] this assumption is not correct.
With these subdivisions we can determine only if the
surface is not contained in an octant. When the sub-
division reaches the leaf level, there is no guarantee
that the voxel really contains a part of the surface.
Nevertheless, the probability of the voxel belonging to

the surface grows quickly at each further subdivision,
and at the last level we assume that this probability
is very high. The voxelization obtained is guaranteed
to envelop the surface.

These subdivision algorithms require a totally dif-
ferent approach for parallelization. First, the octree
must be separated from the subdivision. The subdivi-
sion must continue until the last level, and only then,
can the voxel be stored into the octree. This implies
that the octree storage must be very fast. Thanks to
the efficient octree traversal algorithm presented in
this article, the time of storing voxels in the octree is
negligible in relationship to the rest of the task.

The most time-consuming part of the algorithm,
thus the best candidate for the parallelization, is the
test to know which octants definitely do not intersect
the surface. This part of the algorithm also includes
the calculation of the normal vector (only on the last
level) for every voxel, for later use during the visual-
ization process. These tasks are very time-consuming
and parallelization is desirable. We assign these tasks
to several slave processes that run in parallel. The
master process creates the slave processes when the
voxelization is required, controls the work balance,
kill the slave processes when the work is done, and
displays the voxelized scene. This approach has very
promising results.

2. SERIAL VOXELIZATION ALGORITHM

We use interval arithmetic to voxelize implicit sur-
faces, that is, surfaces given by the set of points which
are solutions to a function of the kind F(z,y, z) = 0.

Our voxelization [SC97] is accomplished by subdi-
viding the space in a recursive way. Each subdivided
octant is represented by three intervals, one for each
variable (X=[xo,x1], Y=[yo,y1] and Z=[z0,21]), where
the lower and upper bounds correspond to the octant
bounding coordinates. The implicit function, after its
translation to interval arithmetic, is generally called
an “inclusion function” [Sny92]. The result of ap-
plying the three intervals in the inclusion function
is an interval with two real bounds. If the interval
lower bound is greater than zero, then the octant is
guaranteed to be totally outside the surface. If the
interval upper bound is less than zero, then the oc-
tant is guaranteed to be completely inside the surface.
In both cases the octant is rejected. Otherwise, the
octant might intersect the surface and it is further
subdivided. The algorithm in Fig. 1 shows how the
subdivision works. This algorithm is different from
the actual implementation, as it is given for clarity
purposes. In the actual implementation: the recur-
sion is implemented with a loop and a external stack;
the array S and the function “Width” are not used;
and the function is passed only the lower octant coor-
dinates as arguments instead of the whole intervals.
We have obtained [SC97] better results with inter-

val arithmetic than with other recursive subdivision
methods such as the one used by Kalra and Barr in
[KB89].

Width(I) {
Lis [io,i1];
return(ii-ip);

Voxelize(X,Y,Z) {
X is [x0,x1], Y is [yo,y1] and Z is [20,21];
S(8,3) is a matrix containing items of type [so,s1];
F(X,Y,Z) is the inclusion function for f(x,y,z);
if (leaf level) {
calculate and normalize normal vector;
/* See alg. Fig. 2 */
store_in_octree(xo,y0,z0,normal);
return;

}

/* Subdivide X, Y and Z */
xp—x0+Width(X)/2;
Vh—yo+Width(Y)/2:
zp—2z0+Width(Z)/2;

for(i—0; i<8; i—i+1;
[fo,f1]<—F(S(1 0),8(1,1),8(1,2));
if (0€[fo,f1]) {
Voxelize(S(i,0),S(i,1),S(i,2));

S(O 0)«[x0,xn]; S(0,1)«[yo,yn]; S(0,2)+[z0,2x];
S(1,0)«[xn,x1]; S(1,1)«[yo,yn]; S(1,2)«[20,2n];
S(2,0)«[x0,xn]; S(2,1)[yn,y1]; S(2,2)[20,2n];
S(3,0)«[xn,x1]; S(3,1)«[yn,y1]; S(3,2)[z0,2n];
S(4 0)«—[x0,xn]; S(4,1)[yo,yn]; S(4,2)[zn,21];
S(5,0)«[xn,x1]; S(5,1)«[yo,yn]; S(5,2)[zn,21];
S(6,0)«[x0,xn]; S(6,1)[yn,y1]; S(6,2)|zn,21];
S(7,0) [xn,x1]; S(7,1)[yn,y1l; S(7,2)[zn,21];
)

Figure 1: Serial Voxelization Algorithm

In this article, we use different kinds of implicit
surfaces chosen for their complexity and high vox-
elization times. The normal vector calculation (ap-
plying the analytical gradient of the function) at the
leaf nodes (voxels) and its normalization are time con-
suming and contribute significantly by the high vox-
elization times. The normal vectors are used for visu-
alization purposes. In Scene 1 (see Fig. 4) we use 10
spheres blended together using our polynomial blend-
ing function. The equation of this surface is:

F(z,y,2 Zg - filw,y,2) = C

Where f;(z,y, z) are sphere equations and g(r) is
our polynomial blending function [Sto96] (see [Bli82,
Mur91, Wyv94, PASS96] for blending functions):

1
o ={ 7 -(r?—R%>* if r<=R

0 if >R

The other two scenes, Scene 2 and 3, are given
by implicit functions given in spherical coordinates.
Their equations and rendering are given in Fig. 5.
A special technique, described in [SK98], is used to
convert rectangular intervals to spherical intervals.

char *octree;/* pointer to the first free octree byte *

char *free_space; /* pointer to the first free byte in a block */
int free_bytes; /* number of remaining free bytes in a block */
int X_ant, Y_ant, Z_ant, maskl, mask2;

init_octree() {

/* Initialize masks as follows (each square is a bit) */
/* n = number of octree levels */

/* nb+1 = number of variable bits */

nb n+3n+2n+l1 n n-1 n-2 5 4 3 2 1 0
mask1{0]-J0J0J0]1]0J0[-[o[0[0[0[0]0]
mask2 [T JI]i]1]0]0]0[-[0o[0o]0]0[0]0]

octree«—free_space«—alloc_block(); /* allocates one block */
free_bytes«Size_of_Block—Bytes_in_Cell;
free_space<—free_space+Bytes_in_Cell;
push(octree);
/*variables to find common parent */
X_ant«—0; Y_ant«<0; Z_ant«0;
¥
store_in_octree(X,Y,Z,input)
int X,Y,Z;
any input;
{ char **pcel;
/* Ascend octree to find a common parent */
while (((X and mask2) # (X_ant and mask2)) or
((Y and mask2) # (Y-ant and mask2)) or
((Z and mask2) # (Z-ant and mask2)))
{ pop();
maskl«—maskl<<1; mask2«mask2<<1;

pcel—pop();
while (TRUE) /* Descends octree until the voxel* /
{ push(peel);
if (Z and maskl) pcel«pcel+4;
if (Y and maskl) pcel«—pcel+2;
if (X and maskl) pcel«—pcel+1;
if ((maskl and 1) = 0)
{ maskl«<maskl>>1; mask2«—mask2>>1;
if (*pcel = 0) /* if node doesn’t exist, creates it */
{ if (free_bytes<Bytes_in_Cell)
{ free_space«<alloc_block(); /* allocates */
free_bytes«—Size_of_Block; /* one block */

*pcel—free_space; /*creates and descends */
pcel—free_space;
free_space«—free_space+Bytes_in_Cell;
free_bytes=free_bytes-Bytes_in_Cell;

else pcel—*pcel; /* Otherwise descends only*/

}
else break; /* Leaf reached. Exit loop */

X.ant«—X; Y_ant<—Y; Z_ant«—Z;
*pcel«—input;

Figure 2: Octree generation algorithm

When the subdivision arrives at the last level, the
normal vector is calculated and stored into the oc-
tree. The octree is a convenient way to represent huge
voxel spaces without consuming too much memory. It
also allows us to represent interior empty space very
economically. The voxelization method with minor
modifications can also detect interior regions.

3. SERIAL OCTREE GENERATION

Our octree is a classical pointer octree, where the root
node is defined by a pointer called “octree”, as shown
in Fig. 2. This pointer points to an array of pointers
with eight elements, each one representing one eighth
of the original volume. Each of these arrays is called
a cell. A null pointer means that the region is empty,
while a non-null pointer points to another array of
eight pointers, further subdividing the region. This
process continues until the leaf node is found, where

each non-null pointer points to a voxel.

The efficiency of our octree lies into its simplic-
ity. We keep one integer variable “mask1” with a set
bit exactly at the bit position “n”, where “n” is the
current octree level, which is the total number of oc-
tree levels in the beginning (see Fig. 2). We use this
bit to filter the coordinates bits and to control the
algorithm as in the octree ray traversal algorithm in
[SCI5].

The algorithm in Fig. 2 is given in a “C-like”
pseudo-code. For the sake of clarity the type castings
are omitted; each assignment is given by a «—, the log-
ical commands are written with its names (and and
or) instead of symbolically, and the recursive stack
operations are denoted by push (to put and element
into the stack) and pop (to remove an element from
the stack).

Once initialized, the octree is dynamically created
by calling store_in_octree() for each new produced
voxel. This function receives 4 parameters - the three
voxel coordinates (X, Y and Z) and a pointer to the
voxel content (input). In our case, it is the pointer to
the surface normal in the voxel.

A significant feature of this algorithm is that it
does not require descending all octree levels from the
root. It starts from the cell where the last voxel was
stored. In most cases the current voxel will lie in the
same cell or in a nearby relative cell. If it does not
lie in the same cell, the algorithm ascends some levels
until the common parent is found. This happens in
the first part of the algorithm.

To find the common parent we use the variable
mask?2 as shown in the algorithm. This part is con-
siderably efficient because it is translated to very few
machine instructions and the variables used are al-
ways in the cache memory. The variable mask?2 is
used to filter the most significant bits from the co-
ordinate values. While the most significant bits of
the current voxel coordinates filtered by mask2 are
not equal to the previous voxel coordinates most sig-
nificant bits (also filtered by mask2), the algorithm
goes up one level (pop command), and shifts both
mask variables to the left. When both most signifi-
cant bits become equal, the common parent is found
and the next part of the algorithm will be executed
to descend the octree using the variable maski. The
mask2 variable is shifted left to be able to filter the
most significant bits of the coordinates for the octree
level immediately upper to the current level. The
variable mask1 is shifted left to be able to filter the
correct coordinate bit corresponding to the resulting
octree level when the the common parent is finally
found. The variable mask! is then used to descend
the octree.

The next part of the algorithm descends the octree
from the common parent cell, creating new cells when
it does not yet exist (when *pcell=0).

4. PARALLEL RECURSIVE SUBDIVISION

Our parallel implementation is a simple master-slave
configuration. The master creates the slaves and con-
trols their activities. The slaves and the master run
in different processors. This configuration was imple-
mented into a shared memory SGI Challenge multi-
processor system. The master maintains an internal
work stack where all octants that are going to be sub-
divided are stored. Initially, only the first eight oc-
tants are stored into this stack. The master creates
the slaves and enters into a loop until the work is
completed. In this loop, the master scans for all non-
idle slaves queues in search of their results to store
them into the stack or, at the leaf level, into the oc-
tree. Initially all slaves are idle; thus only the eight
original octants remain in the stack. After that, the
master distributes the octants from the stack to the
idle slaves, if there are any.

Each slave that receives one octant starts to subdi-
vide it and test if the surface is contained in each sub-
octant. This test is the most time-consuming task,
thus the focus of our parallelization algorithm. If the
test is true for a given sub-octant, it is stored into the
slave queue. This queue has only eight positions, and
can be accessed by two different indices: one for the
master and one for the slave. When the master scans
a slave queue it uses its own index. When this index
is smaller than the slave index, it is incremented and
the octant from its corresponding position in the slave
queue is transferred to the appropriate data struc-
ture. If the slave working octree level is a leaf level,
the octants are voxels and are not written into the
working stack but directly into the octree. In this
way, the quantity of information passing through the
work stack is reduced, thus significantly contributing
to the optimization of the dynamic load balance, lead-
ing to a better performance. Once the slave is finished
and its entire queue has been transferred away, it be-
comes idle waiting for a new octant from the master.
A considerable amount of the time is spent in the nor-
mal vector calculation and normalization, which take
place at the last level (leaf level) only. In this way, the
method automatically atributes more priority to the
higher levels, since the processing of a higher level is
faster than the leaf level. Thus, higher levels are likely
to be processed more often by the master. Therefore,
it is highly improbable that the work stack would be
empty with slaves processors waiting for other pro-
cessors to fill it. Then, the processing of the higher
levels would probably show a constant increase in ef-
ficiency for a growing number of processors, but at
the leaf level the efficiency would gradually degrade
because of the serial copy managed by the master. In
those cases, more sophisticated methods for copying
the information from the slaves to the stack/octree
should be taken into account.

The algorithm is shown in Fig. 3.

slave()
{ while (TRUE);
{ wait for a master job;

get octant(X,Y,Z,my—level);

i+— my—i«— -1;

for (each of eight sub-octants)

{ determine Xg,Ys and Zs for sub-octant;
if (octant(Xs,Ys,Zs,my—level) may cut surface)
{i— i+l
if (my—level is leaf);
{ put voxel(Xs,Ys,Zs,normal) in my—queueli]

else put octant(Xs,Ys,Zs) in my—queueli;
my—i=i;

}
}
}

master()
{ init_octree();
initialize data structures;
push first eight octants into work stack;
make copies of slave() to all processors and execute them;
while (there is still work)
{ for (each non-idle slave)
{ i < slave—master.i;
level «— slave—level;
if (level is leaf);
{ while (i < slave—i)
(i —it+1;
get voxel(X,Y,Z,normal) from slave—queuel[i];
store_in_octree(X,Y,Z,normal);
}
}

else
{ while (i < slave—i)
{i—itl;
get X,Y,Z from slave—queueli];
push octant (X,Y,Z,level+1) in work stack;

slave—master_i « i;
if (slave is done)
{ slave—master_i « -1;
make slave idle;

for (each idle slave)
{ pop octant (X,Y,Z,level) from work stack;
if pop was successful give octant to slave;

kill all slaves;

Figure 3: Parallel recursive subdivision

5. RESULTS

Table 1 summarizes our results for a resolution of
5123. We show the times as a function of the number
of slaves, and the yield in relationship to the time
spent for just one slave. The yield is calculated by
dividing the estimated time (%, where t; is the time
for just one slave and n is the number of slaves) by
the real time (t,,), that is:

yield =
n-t,
The yield calculated this way gives a clear idea
of the slaves’ activity. The algorithm was conceived
to have a high parallel performance because the work
tends to be evenly distributed among the slaves. Nev-
ertheless, the results showed an unexpected outstand-
ing performance in Scene 3 for 2 to 4 slaves and for 7
slaves.

Figure 4: Scene 1, ten spheres blended

(b)

Figure 5: (a) Scene 2, sin(46)-sin(8¢)—
(b) Scene 3, sin(36)-sin(4¢p)—

Thus, Scene 3 can be considered a good test scene
for further improvements of the algorithm. The im-
provements can be obtained by forcing the same con-
ditions for other scenes through the implementation
of a smarter task distribution algorithm.

Scene 1 Scene 2 Scene 3
slaves | time | yield | time | yield | time | yield
1 88s | — 111s | — 71 -

45s | 97% | 58 s | 95% | 35 s | 100%
34s | 88% | 38s | 97% | 23 s | 100%
26s | 84% | 31s | 89% | 17 s | 100%
21s | 83% | 28s | 7T9% | 16 s | S8%
20s | 73% | 24s | 7% | 14s | 83%
7 14s | 89% | 21s | 75% | 11s | 92%

O OY = W DN

Table 1: Performance results for a voxelization reso-
lution of 5123

6. VISUALIZATION METHOD

The visualization method used to generate images for
this article is based on high-resolution voxel spaces
(resolution is 512% in Figures 5 and 4). Voxels are
stored in an octree, thus, allowing quite huge dis-
crete spaces without a very high memory consump-
tion. Normal vectors are calculated during the vox-
elization (times in Table 1 include this calculation)
by evaluating the gradient in the middle of the voxel
and then normalizing it. A voxel, located at the leaf
octree level, is just a pointer to a structure contain-
ing the three normal vector components, color and
other information. Higher octree level nodes contain
only octree children pointers, when they exist, or zero
otherwise. All the voxels are considered as points and
rendered using SGI's GL or OpenGL.

This visualization method can allow close-ups of
the surface using levels of details. Levels of details are
quite natural to hierarchical voxel models, the models
used in this article, because the transition between
the original and refined model is indistinguishable.

A major advantage of our method is that no spe-
cial hardware is necessary to use voxels. In addi-
tion, it allows the mixing of polygonal models (for
representing polygonal objects) with voxels at graph-
ics engine level, thus, eliminating the need to convert
polygons to voxels while profiting from hardware ren-
dering for polygons.

The algorithm describing the visualization tech-
nique is given in Fig. 6. The variables cell and root
have initially the address of the root of the octree.
Variable i is an index varying from 0 to 7 used to ac-
cess the current octree element into an eight elements
cell. These eight elements identify eight equal sided
neighbour cubes, defining a recursive subdivision of a
single cube. Each of these elements contains a pointer
to a new cell, when this cell contains any part of the

cell = root = octree root cell address;
=0,
push/(cell);
push(i);
do {
/* ascend the octree until i<8 */
while ((i>7) and (cell#root)) {
pop(i); /¥ Ascend one*/
pop (cell); /* octree level.* /
X=X>>1; Y=Y>>1, Z=2>>1;

while (i<7) { /* Descend or move right */
auz=cellfif;
X=(X<<1)or (iand 1); /* Calculate */
Y=(Y<<1)or ((i>>1) and 1); /* the vozel */
Z=(Z<<1)or ((i>>2)and 1); /* coord. */
if (auz=Leaf Node) { /* Leaf? */
Display vozel (X,Y,Z) as a point with the
normal vector pointed by “aux”;
i=1+1; /* Go right */
X=X>>1; Y=Y>>1, Z=2>>1;

else { /* Not Leaf!*/
if (aua#0) { /* Empty? */
push (cell); /* Descend1*/
push (i+1); /* level */
cell=auxz;
1=0;
else { /¥ Empty ! */
i=1+1; /* Go right */

X=X>>1, Y=Y>>1; Z=2>>1,
}
}

}
} while (cell#root)

Figure 6: Visualization Algorithm

surface, or a null pointer otherwise. The recursion
is controlled by a stack denoted by the instructions
push (to introduce a value in the stack) and a pop
operator (to extract a value from the stack). The
variable i is assigned a zero value denoting a left to
right tree traversal. Both, cell and ¢ are pushed in
the stack to start the recursive traversal. The recur-
sion is implemented by the do-while loop as shown
in the algorithm. The first part inside the loop as-
cends the tree if i reaches an index greater than 7.
Since 1 is zero in the beginning of the algorithm, the
control passes immediately to the second part which
descends the tree. This part is a while loop which
takes place while <7, indicating that this part also
advances to all the elements of the current cell from
left to right. The voxel coordinates X, Y and Z are
built, bit by bit, from the ¢ values. Notice that the
previous coordinates bits are saved by shifting them
to the left at each new interaction.

If the current cell is a leaf node, then X, Y and Z
contain the complete coordinates of the voxel to be
displayed and the current element (cellfi/) contains
a pointer to the normal vector of the voxel. These

informations are sent to the graphics card using GL
point primitives to display the point with the normal
vector. In practice, these informations are first stored
in a list and when the list is full all the points are dis-
played at once to increase efficiency. These details
are omitted in the algorithm. Notice that after dis-
playing the voxel, i is incremented to advance to the
next element to the right of the current element. Also
notice that the coordinate variables must be shifted
one bit to the right.

If the cell does not correspond to a leaf node, and
if the current element (cellfi]) is zero, the element
does not exist, therefore the algorithm advances to
the next element (by incrementing i) and shifts the
coordinates one bit to the right. However, if the cur-
rent element is not zero, the address of cell and the
next element index (i+1) are saved in the stack, and
the algorithm descends the tree by attributing to cell
the address contained in the current element (cellfi])
and making 7 equal to zero (to restart from the ex-
treme left side again in the new cell).

Once i reaches the value 8, that happens when
all the elements of a cell were visited, the control is
passed again to the main loop that continues if cell #
root. This time ¢ > 7, and the first while loop takes
the control. This loop extracts from the stack: (1)
the indexes i of the current elements and (2) the cell
addresses corresponding to all those cells that were
already completely visited. At each interaction this
loop also shifts the coordinates one bit to the right.
Notice that the loop either stops when a cell not yet
completely visited is found (denoted by i values less
or equal to 7) or when the root cell is found. If the
root cell is found and i is greater than 7, all cells in
the tree were visited and the algorithm finishes.

At the current time, this method allows interac-
tive visualization for easy surface inspection. The im-
ages produced in this article are snapshots from the
visualization method viewing window. Image quality
is comparable to that of ray-casting (see Fig. 5 and
Fig. 4).

7. CONCLUSION

Former parallel voxelization algorithms using recur-
sive subdivision and octree storage [BFG94] are not
previewed for a whole class of subdivision algorithms,
particularly for the one used and explained in this
article and the ones in [KB89, Duf92, Tau94, SC97];
these subdivisions only guarantee that a surface is
not contained in an octant, not the opposite. Our
approach not only solves this problem but also gen-
eralizes its application to a broader variety of spatial
recursive subdivisions and data structures. Since our
algorithm does not store any voxel until the bottom
level of the subdivision is reached (the voxel level); it
can also be used with 3D arrays or other data struc-
tures, besides octrees. The key factor for obtaining

this feature is isolating the octree from the subdi-
vision algorithm, a must for the kind of subdivision
algorithm we use. This contributes to a higher de-
gree of abstraction, thus giving more flexibility. We
show that this flexibility is not coupled with loss of
performance, as it is normally the case, thanks to
our efficient octree generation algorithm and our opti-
mized dynamic load balance scheme. However, other
data structures might not profit from the memory co-
herency that the octree provides, which is in certain
cases can be very important.

8. AKNOWLEDGEMENTS

The authors would like to thank Frank Dachille for
his interest and help in this work, giving examples
and initial ideas for the parallelization algorithm.

9. REFERENCES

[BFG94] M. A. Bauer, S. T. Feeney, and I. Gargan-
tini. Parallel 3D Filling with Octrees. Journal of
Parallel and Distributed Computing, 22:121-128,
1994.

[Bli82] James Blinn. A Generalization of Algebraic
Surface Drawing. ACM Transactions on Graph-
ics, 1(3):235-256, July 1982.

[Duf92] Tom Duff. Interval Arithmetic and Recur-
sive Subdivision for Implicit Functions and Con-
structive Solid Geometry. Computer Graphics,
26(2):131-138, July 1992.

[KB89] Devendra Kalra and Alan Barr. Guaranteed
Ray Intersections with Implicit Surfaces. Com-
puter Graphics, 23(3):297-306, July 1989.

[Mur91] Shigeru Muraki. Volumetric Shape Descrip-
tion of Range Data using “Blobby Model”. Com-
puter Graphics, 25(4):227-235, July 1991.

[PASS96] A. Pasko, V. Adzhiev, A. Sourin, and
V. Savchenko. Function Representation in Geo-
metric Modeling: concepts, Implementation and
Applications. The Visual Computer, 25(4):227—
235, July 1996.

[SC95] Nilo Stolte and René Caubet. Discrete Ray-
Tracing of Huge Voxel Spaces. In FEurograph-
ics 95, pages 383-394, Maastricht, August 1995.
Blackwell.

[SCI7] Nilo Stolte and René Caubet. Comparison
between different Rasterization Methods for Im-
plicit Surfaces. In Rae Earnshaw, John A. Vince
and How Jones, editor, Visualization and Model-
ing, chapter 10, pages 191-201. Academic Press,
April 1997. ISBN: 0122277384.

[SK98] Nilo Stolte and Arie Kaufman. Robust Hi-
erarchical Voxel Models for Representation and
Interactive Visualization of Implicit Surfaces in
Spherical Coordinates. In Implicit Surfaces’98,
pages 11-18, Seattle, June 1998.

[Sny92] John M. Snyder. Interval Analysis For Com-
puter Graphics. Computer Graphics, 26(2):121—
130, July 1992.

[Sto96] Nilo Stolte. Espaces Discrets de Haute Ré-
solutions: Une Nouvelle Approche pour la Mo-
delisation et le Rendu d’Images Réalistes. PhD
thesis, Université Paul Sabatier - Toulouse -
France, April 1996.

[Tau94] Gabriel Taubin. Rasterizing Algebraic
Curves and Surfaces. IEFE - CGA, pages 14—
23, March 1994.

[Wyv94] Brian Wyvill. Explicating Implicit Surfaces.
In Proceedings of Graphics Interface 94, pages
165-172, Banff, Alberta, May 1994. Canadian
Information Processing Society.

[YCK92] Roni Yagel, Daniel Cohen, and Arie Kauf-
man. Discrete Ray Tracing. I[IFEE - CGA,
12(5):19-28, 1992.

