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Abstract

Rasterizing implicit surfaces has been an important research problem,
since it serves as a base to modelize and visualize these kind of func-
tions. Hence, rasterizing algorithms are useful in many scientific domains:
mathematical visualization, medical visualization (modelling tumors, or-
gans, prosthesis, etc.), physical simulations, volume visualization, mod-
elling, Ray-Tracing, Discrete Ray-Tracing, etc.

In this paper we generelise two algorithms previous known as implicit
surfaces “subdivision methods” to apply them to the rasterization of these
surfaces into a 3D discrete space. We also propose the interactive visuali-
sation of these surfaces directly into the voxel format avoiding convertions
to other representations. We finally compare the different rasterization
methods in terms of performance, quality, robustness and generality, try-
ing to locate possible pitfalls among them. This comparison is very useful
to whom is wanting to implement such rasterization methods. Neverthe-
less it was virtually impossible until now to estimate which method was
the best, since to our knowledge no comparisons between them were ever
done. The comparative results we present in this paper will allow much
better estimations.

Key Words: Implicit Surfaces, 3D Rasterization, Subdivision, Octree,
Voxel, Visualization.

1 Introduction

Implicit surfaces can be defined by functions of the kind:



F(z,y,2) =0

An interesting property of this kind of function is its ability to determine if
a point is inside (when F'(x,y, 2)<0), outside (when F'(x,y,2)>0), or on (when
F(x,y,2)=0) the surface. The sphere (z2+1?+2%—r?=0, where r is the ray) and
the plane (az+by+ cz+d=0, where a, b, and ¢ are the normal vector components
and d is an arbitrary constant) equations are the simplest examples of implicit
functions. All implicit functions that can be completely defined analytically are
called analytical implicit functions. These are the functions that are considered
in this article. There are still other kinds of implicit surfaces that cannot be
expressed analytically, which are called procedural implicit functions, since they
are defined procedurally [Bloomenthal and Wyvill, 1990]. This kind of surface
must count on other representations to estimate the normal vector, since they
don’t allow derivative calculations [Norton, 1982]. Conversely in analytic implicit
functions the normal vector can be calculated by deriving the function equation
in relationship to each axis, applying the point coordinates to the derivatives
expressions and normalizing the vector. In other words, each component of the
normal vector firstly has the same components as the gradient in the point and
is normalized afterwards.

The analytic implicit functions can be subdivided in two main groups: al-
gebraic implicit functions and non algebraic implicit functions. The algebraic
implicit functions [Sederberg, 1990] can be reduced to polynomials by algebraic
manipulation, that is, it contains only arithmetic operations and integer powers.

Non algebraic surfaces cannot be reduced to polynomials. One exam-
ple particularly useful is the “blobby model” [Blinn, 1982, Muraki, 1991,
Bidasaria, 1992] where negative algebraic expressions are placed as exponents
of exponential functions. These exponential functions are added (and/or sub-
tracted) together and made equal to a constant (C, below):
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When the objects are considerably near one to the other, the resulting surface
is a fusion between the several algebraic surfaces in the exponents. This fusion is
controlled by the parameters a; and b; which change the exponential form. The
exponential is used as a “blending function” (Fig. 1) which gives the amount of
mixing in relationship to the distance from functions’ (f;(z, vy, z)) origins. The
main interest of this kind of surfaces is the modelling and animation facilities.
Other advantages are the exact simulation of certain physic phenomena: electron
clouds, molecules, isopotential fields, etc.

Similar effects can be obtained with algebraic surfaces. Addition between
two exponential functions in the “blobby model” corresponds to multiplying
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Figure 1: “Blobby model” blending function and its effects

the two algebraic functions that were in the exponents of the exponentials in
the “blobby model” [Sederberg, 1990]. The disadvantage of using this kind
of algebraic surfaces is that the modelling and animation facilities are re-
duced. Nevertheless polynomial blending functions [Desbrun and Gascuel, 1995,
Bittar et al., 1995] (Fig. 2) allowed even more flexibility in animation and mod-
elling than exponential blending functions. If the functions to be blended are
algebraic and polynomial blending functions are used, the obtained implicit func-
tion is algebraic. However this kind of algebraic surfaces is very flexible and even
simpler to manipulate than “blobby models”. Nevertheless blending non alge-
braic functions allows a wider variety of forms, but the resulting surface is non
algebraic.

Algebraic surfaces are more easily rendered than non algebraic surfaces. Ray
Tracing algebraic surfaces of arbitrary order is straightforward using Collins the-
orem [Hanrahan, 1983]. Numerical techniques for ray tracing non algebraic sur-
faces are generally instable. An elegant method to ray trace this kind of surface
was proposed by Kalra and Barr [Kalra and Barr, 1989]. They calculate Lips-
chitz constants to subdivide the surface and to ray trace it. The method always
converges and works for algebraic and non algebraic surfaces.

Duff [Duff, 1992] proposed another method to ray trace CSG trees of algebraic
surfaces but the subdivision method works also for non algebraic implicit surfaces.
The basic principle is the same as in [Kalra and Barr, 1989]: subdivide the surface
until a certain level and ray trace the surfaces contained in the sub-regions crossed
over by a ray. To subdivide the implicit functions he uses interval arithmetic. In
fact Kalra and Barr’s method “is a sort of interval arithmetic without intervals”
[Duff, 1992].

Taubin [Taubin, 1994a, Taubin, 1994b] presented a method to rasterize im-
plicit algebraic curves which can also rasterize implicit algebraic surfaces [Taubin,
1994b). Although showing the surfaces directly in the “voxel” format he suggests
converting the voxels into polygons using a technique known as “marching cubes”
[Lorensen and Cline, 1987] and afterwards use conventional methods to render
the polygons. We propose the direct visualization of the voxel volume by keeping
the normal vector in the middle of the voxels and using a high subdivision level.
To avoid the high memory consumption we store the voxels into an octree. This
approach allows us to render the surfaces by using our fast discrete ray tracing



[Stolte and Caubet, 1995a, Stolte and Caubet, 1995d, Stolte and Caubet, 1995b,
Stolte and Caubet, 1995c], or a Z-Buffer algorithm considering each voxel a point
of the surface. This later visualization method enhances significantly the in-
teractivity with no loose in image quality, but with less realism as ray tracing
generated images. The image quality is generally better than using polygons. In
the case when all projected polygons are smaller than a pixel the obtained quality
is equivalent. Nevertheless we still have the advantage that it does not require
polygonization.

Bloomenthal and Wyvil [Bloomenthal and Wyvill, 1990] have presented sev-
eral techniques for modelling implicit surfaces. We don’t claim interactive mod-
elling in our method but an acceptable level of interactivity in the visualization
process. Nevertheless a good interactive modelling level can be obtained limiting
the voxel space resolution which allows faster prototyping as proposed in [Bloo-
menthal and Wyvill, 1990]. Bloomenthal and Wyvil [Bloomenthal and Wyvill,
1990] recommend octree display, as proposed here, for a coarse representation
of the surface or for volume rendering hardware. Nevertheless the advances in
graphics hardware and the memory lowering prices in these later years are drasti-
cally changing this situation. Even advances in software have been also reversing
this situation. An example is the adaptative subdivision method proposed by
Duff [Duff, 1992]. Instead of calculating curvatures as observed in [Bloomenthal
and Wyvill, 1990] this subdivision method uses simple interval arithmetic, which
is computationally inexpensive in most of today’s machines.

On the other hand near to real time interactive modelling could be achieved
using our method with special blending functions. “Blobby” models use expo-
nentials as blending functions (Fig. 1) with negative exponents. An inconvenient
of using these blending functions is that their values are never zero. This implies
that a full function evaluation is needed to calculate its value. If a huge amount
of functions is considered, like in biological molecular models, its rasterization
time is very time consuming. In these cases most of the times approximations
have to be done [Blinn, 1982, Fujimoto et al., 1986], which are not often desired.
To avoid these problems other kinds of blending functions can be used [Desbrun
and Gascuel, 1995, Bittar et al., 1995]. We can design blending functions that go
to zero for a relatively short distance. We show in Fig. 2 a polynomial blending
function given by a Bezier curve. The curve appearance is similar to exponen-
tials but with the advantage of having local influence. Only distances between
zero and r need to be considered. In this case rasterizations of huge biologi-
cal molecular models are feasible in quite low time. Even interactive modelling
can be envisaged using this approach assuming that most changes are local and
can be rasterized in almost real time. The octree display time can be signif-
icantly enhanced by storing the voxels into a linear octree. Since the implicit
surface subdivision methods subdivide the space in the same order an octree is
traversed, the generated voxels are already sorted into the linear octree. In the
linear octree the coordinates of each voxel should be explicitly stored. To save



space, memory could be allocated in eight voxels groups, each group represent-
ing one octant as done in many linear octree implementations [Glassner, 1984,
Sung, 1991]. The linear octree would be a chained list of octants. Each octant
would contain a pointer to the next octant, the coordinates of the octant (the
last voxel coordinate bits are given by voxels’ positions into the octant as in stan-
dard octrees), and eight pointers each one pointing to the corresponding voxel
(or a null pointer if the corresponding voxel is empty). To display the octree
the chained list would be linearly traversed and all the voxels would be very
efficiently obtained. The voxel search in this octree can be done with the help
of a hash table, as done in many linear octree implementations [Glassner, 1984,
Sung, 1991].

A facteur de mélange
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Figure 2: polynomial blending function

The voxel based visualization methods have been neglected until recently.
Nevertheless its importance is remarkable. Mathematicians could finally analyze
implicit functions interactively. Implicit surfaces could be easily ported to med-
ical imagery to simulate tumors, organs, prosthesis, etc. The research of new
forms using implicit surfaces could count on well known mathematic expressions
where the derivatives are easily calculated, and many other mathematic proper-
ties can be easily derived from its equation. Physical simulations using implicit
surfaces could be easily obtained. All these applications are very difficult to get
using procedural implicit surfaces. Since they have no equation they need to be
converted into polygons [Bloomenthal and Wyvill, 1990] or voxels [Norton, 1982]
in order to estimate the normal vectors, for example.

These applications are then ready to profit from the benefits of voxel repre-
sentation of implicit surfaces. Consequently the performance of implicit surfaces
rasterization algorithms is very important to the increase of these benefits. The
rasterization quality is also very important, since a better rasterization implies a
better representation of the surface. We propose in this article the comparison
between different rasterisation methods for the two most used implicit surfaces:
algebraic implicit functions and exponential implicit functions.



2 Implicit Surfaces Rasterizing Methods

2.1 Kalra and Barr’s Subdivision Method

The subdivision method proposed by Kalra and Barr [Kalra and Barr, 1989] can
be used to rasterize implicit surfaces. It consists in a recursive subdivision where
certain regions in space are divided into eight subspaces, called octants. This is
the same construction logic used to build an octree. In fact we do use an octree
in our discrete ray-tracing system [Stolte and Caubet, 1995a, Stolte and Caubet,
1995d, Stolte and Caubet, 1995b, Stolte and Caubet, 1995¢| and our interactive
visualization software. Nevertheless direct memory allocation for the octree using
this method is not recommended, since the method only guarantees discarding
octants where the surface doesn’t pass through but doesn’t guarantees if there
is really a piece of surface inside an octant. We subdivide the surface until a
maximum level and allocate the memory only when the subdivision arrives to
this level. Using a linear octree as commented previously would enhance the
performance of this process, since no intermediate octree levels exist and several
optimisations can be done.

The octant rejection condition is when the norm of the maximization of the
partial derivatives over the octant multiplied by the half of the octant diagonal
is less than the absolute value of the function value at the middle of the octant.
The influence of this test can be seen as a sphere centered in the middle of the
octant with ray greater than octant’s diagonal. Therefore it rejects the octants
where the surface has no intersection with this sphere and when the surface is
not totally inside it. Since this sphere is greater than the octant, the test can
catch pieces of the surface that pass close to the octant, but does not necessarily
pierce the octant. Hence the “tightness” of the rasterization depends directly on
the partial derivatives maximization. This means that if this maximization is too
overestimated the rasterization will take more time, since more subdivisions are
necessary to correctly rasterize it, or if we limit the number of levels the quality
of the rasterization is going to be poor. On the other side, underestimating the
maximization can be translated as errors in the rasterization. To accelerate the
process, Kalra and Barr proposed to test in advance whether there is variation in
sign in the function values at the eight octant vertexes. This would clearly indi-
cate an intersection between the surface and the octant, since negative function
values indicate that the vertex are inside the surface and positive function values
indicate that the vertex is outside the surface.

2.2 Duff’s Subdivision Method

Duff [Duff, 1992] has proposed another method to rasterize algebraic and non
algebraic implicit functions. He uses interval arithmetic for calculating function
values. Snyder [Snyder, 1992] has extended the idea to other Computer Graphics



problems. Interval arithmetic generalizes traditional arithmetic guaranteeing re-
sult exactness inside an interval. A certain value in interval arithmetic is given by
two values, the lower and the higher bounds of the interval that contains the real
value. All arithmetic operations are then redefined to work in this interval giving
as result another interval defined by the resulting lower and higher bounds. To
use interval arithmetic into a computer, we should use floating point arithmetic
and modify the interval in such a way that the real value we want to represent are
in a computer representable floating point interval. To guarantee result exactness
we must change the rounding mode to minus infinity in lower bound calculation
and to plus infinity in higher bound calculation. Interval arithmetic can be gen-
eralized to other mathematical operations as integer powers and transcendental
functions.

The rasterization is done by subdividing the space in an octree-like way as
seen in the precedent method. Each subdivided octant is represented by three
intervals, one for each variable (x,y,z), where the lower and higher bounds corre-
spond to the octant bounding coordinates. The result of applying these intervals
in the function (in interval arithmetic) is an interval. If the interval lower bound
is greater than zero then the octant is totally outside the surface. If the interval
higher bound is less than zero then the octant is totally inside the surface. In both
cases the octant is rejected. Otherwise the octant might intersect the surface and
deserves being further subdivided. We can notice at this point that this method
clearly has a much more efficient octant elimination heuristic. In the precedent
method if we calculate the value of the function in the eight vertex, and if all
the values are negative or positive, we cannot eliminate the octant. With the
interval arithmetic we can. Hence we can expect that this method is faster than
the precedent. Nevertheless this must be verified experimentally.

2.2.1 Interval Arithmetic

Duff and Snyder [Duff, 1992, Snyder, 1992] have simultaneously but indepen-
dently introduced interval arithmetic to solve Computer Graphics problems. Duff
concentrated in 3D implicit functions subdivision and Snyder in more general
problems like silhouette edge detection, surface polygonization, minimum dis-
tance determination, etc.

Interval arithmetic guarantees that the exact result of any arithmetic opera-
tion is between two values, called interval bounds. Any real number is represented
by two interval bounds. For example, the coordinates, X, Y and Z are represented
in interval arithmetic as:



These interval bounds in our case are the coordinates of the octant’s bound-
aries. Substituting in the implicit function equation each regular variable by the
correspondent interval and each regular operation by the respective interval op-
eration, produces an interval version of the function, which Snyder [Snyder, 1992]
calls an inclusion function. We can verify if the surface doesn’t pass through the
octant simply testing if the resulting interval doesn’t include zero, that is, when
the inclusion function resulting interval doesn’t include a solution for the regu-
lar function F(z,y,z) = 0. Then if the resulting interval doesn’t include zero,
the function certainly doesn’t have a zero into the octant, therefore the surface
doesn’t pass through the octant.

The interval arithmetic operators are:

X+Y= [x+y,X+Y]

X-Y= [x=Y,X—y]

X - Y = [min(xy,xY, Xy, XY), max(xy, xY, Xy, XY)]
X /Y = XY, XNif0 &y, Y]

These operators are not enough for the functions used in practice. To include
any algebraic expression we need:

X", X" n odd or x >=0
X®=1¢ [X",x" n even and X <=0
[0, max(—x,X)"] n even and 0 € [x, X]

To include exponential functions with negative exponents, which are useful
as blending functions in “blobby” models, we have:

e X =e

—X, €_X]
Any other function can be converted to interval arithmetic similarly by break-
ing the function in their monotonic intervals [Duff, 1992].

2.3 Taubin’s Rasterizing Method

Taubin [Taubin, 1994b] has proposed another rasterization method that works
for algebraic implicit surfaces only. It also uses space subdivision in octree-like
fashion as the precedent methods. The method first translates the origin to
the middle point of the octant. Afterwards the algebraic implicit function is
simplified and converted to a single variable polynomial. If the evaluation of
this new function for the half octant size gives a positive value, then the octant



doesn’t intersect the surface. The simplification starts by grouping all the terms
of the same degree together. Then for each one of these groups the coefficients
absolute values are added to form a new coefficient. The three variables are then
substituted by just one variable, which is raised to the power correspondent to
each group’s degree. Finally, the coefficient which doesn’t multiply any variable
is subtracted from the rest of the polynomial. Notice that the entire polynomial
evaluation is not necessary if a partial result is already negative or zero. We
suggest then that for each polynomial term we test if the result is negative or
zero before the next term is considered. Even with this optimization, we are
not sure if this method is really more efficient than the precedent ones. So this
must be verified experimentally. Nevertheless we have opted to not examine this
algorithm based on the following observations:

e it rasterizes only algebraic functions;

e it recalculates for each octant the polynomial in Taylor series by using
Horner’s algorithm, which require the function in the polynomial form;

e it does not rasterize well near singular points;

Comparative Results

mmage 1 mmage 2 image 3
3D Res | Time | Memory | Time | Memory | Time | Memory
5123 0’34” 6263 17267 5730 0’587 6594
2563 0’08” 2185 07227 2056 013” 2350
1283 | < 001" 1171 0’05” 1103 0’06 1252

Figure 3: Rasterization times for Kalra and Barr’s method

mmage 1 image 2 image 3
3D Res | Time | Memory | Time | Memory | Time | Memory
5123 0’217 8165 0’50” 7802 0257 7330
2563 0°05” 2661 0’09” 2574 0’05” 2456
1283 | <0°01” 1289 <0’02” 1254 <0'01” 1234

Kalra and Barr’s method is not very appropriated for rectangular regions since
it rejects regions outside a sphere. This is equivalent to the spheric bounding

Figure 4: Rasterization times for Duff’s method




volume problem. It is not very effective to long narrow objects. Duff’s method
is more suited to rectangular regions. Therefore it can be used to eliminate long
narrow regions more effectively than Kalra and Barr’s method.

We only used cubic octants which aids Kalra and Barr’s method better than
Duff’s. Anyway Duff’s method was always faster than Kalra and Barr’s method.
Nevertheless Duff’s method always used more memory than Kalra and Barr’s
method. This indicates that Kalra and Barr’s method is “tighter” than Duff’s,
at least for cubic regions. On the other hand Kalra and Barr’s method is very
sensitive to functions like the heart (image 3). In this case Kalra and Barr’s
method took practically twice more time to rasterize it. We can also observe
that algebraic functions take less time to be rasterized than an almost equivalent
form given by exponential functions in both methods (image 1 and 2). This
was expected, since algebraic expressions are faster evaluated than exponential
functions. We can also note how Kalra and Barr’s method is sensitive to singular
points. This sensitivity was noted also in the normal vector calculation near
singular points in both methods. The fact that Kalra and Barr's method uses
the partial derivatives can explain its sensitivity near singular points, since the
normal vector is also calculated using the partial derivatives. At singular points
the partial derivatives are zero, which can explain this behavior. Duff’s method
is insensitive to singular points.

Figure 5: Imagel —f(x,y,2) g(x,y,2)-0.058=0, where
f(2,9,2)=(5-0.78) "+ (y-0.78) *+(2-0.78 ) *+0.001
9(z,y,2)=(1-0.23)+(y-0.23) *(2-0.23)*+0.001



Figure 6: Image2 —>e‘(($—0.78)2+(y-0-78)2+(Z'0-78)2)'3'25) +
o ((1-0.23)%+(y-0.23) % (2-0.23)%3.25) _ 9 _ ¢

All rasterizations were generated into a Crimson SGI workstation with
100MHz R4000/R4010 processors. Memory occupation in figures 3 and 4 are
given in 4 Kb blocks. All images were generated into the same machine using our
interactive voxel visualization software. This software uses an octree to store the
voxels and GL primitives to display each voxel as a 3D point.

4 Conclusion

The importance of implicit surfaces rasterizing methods has been recently em-
phasized. A number of applications can be devised. The use of implicit represen-
tation is a very convenient way to represent 3D objects, since it is very general.
Planes, quadratic surfaces, parametric and more exotic surfaces can be expressed
under the implicit form. Hence it is a very high level modelling tool. In addition
it is very compact, allowing the representation of very complex scenes with less
memory consumption.

We have proposed two rasterizing methods based on existing implicit surface
subdviding techniques. Unfortunately, as far as we know, no comparison between
these methods in terms of quality or performance was given. We have proposed
the experimental comparison between these two methods. These results will be
very useful to whom is desiring to implement such rasterization methods.



Figure 7: Image8 — (z°+y*+22°-1)°-y*(z°+0.1-2°)=0

All the three methods overestimate the size of the octant in a way or another.
The research of better methods, in which this size is exact or is better approxi-
mated, is a constant worry in this research area. Finding out such methods will
allow more precise and perhaps faster rasterizations.

We've proposed visualizing implicit functions directly in their voxel format
with the help of an octree. It allows a near to real time interaction in quite high
resolutions.
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