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ABSTRACT

Interval arithmetic is a powerful, convenient and efficient
tool to solve graphics problems. However, the number of
research papers concerning this subject has been consid-
erably small even though the advantages of interval arith-
metic overweigh their disadvantages. This work shows a
collection of techniques successfully implemented using
intervals that deal with graphics based on recursive voxeli-
sation. Voxelization is seen here as a generic tool to harness
intervals which can be extended to other applications.

Voxelization is the transformation of a continuous sur-
face into voxels. Intervals allow the voxelization to be
done recursively, since interval arithmetic guarantees that
the zero of an implicit function, which describes the sur-
face to be voxelized, cannot occur into a three-dimensional
region. This allows the elimination of the whole region
from subsequent analysis allowing an efficient time recur-
sive subdivision.

Even though voxelization is used here for high quality
interactive display of implicit surfaces, it could also be used
in other rendering algorithms (such as ray tracing), in trans-
formation of implicit surfaces to polygons (using marching
cubes algorithm), or for other more generic tasks such as
calculation the volume inside an implicit surface.
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1 Introduction

Although interval arithmetic has a reputation of being too
conservative when equations become more complex, its
performance is better compared to alternative robust meth-
ods such as Lipschitz constants [11] or other techniques to
correctly estimate the functions’ zeros [13]. In addition,
several known techniques [9] can be used to avoid this in-
terval arithmetic drawback.

Interval arithmetic when used for voxelizing implicit
surfaces, allows the use of logarithmic time recursive sub-
division with efficient elimination of regions that cannot
contain parts of the surface, that do not contain a zero

for the function defining the surface [6, 11, 12]. Recur-
sive subdivision already contributes for reducing the inter-
vals drawback, since the size of the intervals shrink instead
of growing, thus allowing classic interval arithmetic to be
used to efficiently voxelize a variety of implicit surfaces.
However, this might not always be the case, particularly
when a surface is not defined in a closed form.

According to [9], given a region S and each interval
obtained from applying interval analysis in the subdivided
parts of S, they can be combined to produce one resulting
interval for S (its lower bound being the minimal of the
lower bounds and the upper bound being the maximal of
the upper bounds of the intervals in the subdivided parts
of S) that is in fact tighter than the interval obtained by
applying interval analysis in S.

This means that tighter estimates can be obtained by
simply subdividing one or two more levels to verify if a
particular subdivided 3D region really contains a piece of
the surface. But from the analysis of the real complexity
of the recursive voxelization algorithm by measuring the
times of the program reveals that applying this method for
every subdivided 3D region increases the processing time
of 4 and 16 times, respectively.

In our on-going research tighter interval arithmetic
operations significantly increases the performance in some
cases. We are currently examining more performing inter-
val arithmetic operations by dealing with groups of opera-
tions instead of applying them individually as done in clas-
sical interval arithmetic. However, the analysis is ad-hoc
and difficult in cases where the expressions contain terms
involving more than one variable.

One might also want to make use of CSG where sim-
ple equations are most likely to be employed since the
main CSG goal is to represent complex shapes using sim-
ple primitives. Furthermore this is exactly the reasoning
behind“blobby models”[10, 1, 7, 2, 11] where generally
only spheres and super-ellipsoids are used. In our experi-
ence, as shown in this article, interval arithmetic behaves
very well with“blobby models”even if hundreds of primi-
tives and quite complex blending functions with degrees up
to 128 have been used.
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Figure 1. Voxelization times with and without Hierarchical
Elimination

2 Efficient Voxelization of Blobby Models

To efficiently voxelize complex blobby models instead of
evaluating alln primitives of a blobby model at every sub-
division level, the algorithm here proposed evaluates
primitives at the first level trying to eliminate the primitives
that will not contribute to the subsequent lower subdivision
levels. The elimination process, here called hierarchical
elimination, is active at every subdivision level, thus elimi-
nating a primitive as early as possible. The goal is to min-
imize n; (number of primitives at a given subdivision level
1) in the last level of the subdivision, in whidl; (number

of octants at a given subdivision levglis maximal (V).

In interval arithmetic a blobby model is represented by its
inclusion functiorgiven in equation (1).
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G, is the inclusion function of the blending func-
tion g;(r;), wherer,=|f;(z,y,2)| and f is the primitive
(Fi(X,Y, Z) is its inclusion function whileX, Y, Z are the
intervals defining a cubic region iR?3), the function that
gives the shape of the blobby. This blending function is
given by the following expression, knowing th&y is a
real constant and; is power of two:

ﬁ : (’I“i — R?)’h if r<=R;
gi(ri) = ' (2

0 if ri > R1

A primitive can be eliminated when the upper bound
of G, is zero (sincey; is decreasingly monotonic) or simply
if the lower bound ofF; (X, Y, Z) is greater or equal t&?.

To implement the algorithm each blobby is repre-
sented by a position in an array with+ 1 positions, each
one containing a pointer to the next position (each indi-
vidual blobby is identified by an index in this array which
can then be used in the array or arrays containing the real
blobby data), in which the first is dummy (pointing to the
first active primitive - always the first blobby at the start),

functioning as the head of the list containing the active
primitives that are at a certain level. At the top subdivision
level, this main list contains all the primitives. As the sub-
division proceeds, primitives are eliminated by unchaining
them from the main list. A stack contains the first dummy
position of a list in each level. The unchained eliminated
primitives from the main list are chained to the list headed
by the stack position of the current subdivision level. These
eliminated primitives still physically belong to the array
of the main list but they are just not linked anymore to it.
When the recursion goes up the stack, the eliminated prim-
itives at each level are chained back to the main list. In this
way only one array of primitives is used for all the lists and
a significant amount of memory is saved.

Figure 2. Voxelized Sphereflake with 820 blended spheres

The Sphereflake, a classical computer graphics test
scene, was used to test the algorithm. The original Sphere-
flake generation program was modified to blend the spheres
together using the local blending function given in equa-
tion (2). Thea; values were all equal to 64 (degree 128)
except for the first level sphere wharge= 4. The experi-
ments were performed by measuring the voxelization time,
with and without hierarchical elimination, in a voxel space
resolution 0f5123, by gradually increasing the number of
spheres until the maximum of 820 spheres was reached.
With 820 spheres this scene took 305 seconds to voxelize
without hierarchical elimination and only 15 seconds with
hierarchical elimination. This corresponds to a speedup of
more than 20. The results are summarized by the curves in
Fig. 1 and the voxelized object shown in Fig. 2.

It is clear from these results that when the number of
spheres increases the time grows exponentially for a vox-
elization without hierarchical elimination, whereas with hi-
erarchical elimination the time is almost constant.

3 Voxelization of Implicit Surfaces in Spher-
ical and Cylindrical Coordinates

The voxelization is done by subdividing the rectangular
space in a recursive way in eight equal sized cubes at each



interaction. Each of these cubes represents three intervals
in interval arithmetic, which are converted to spherical in-
tervals and then applied to the implicit spherical inclusion
function for a containment test [12].

Origin

Figure 3.Spheric Interval:R[rg, r1],©[00, 61], ®[Po, ¢1]

The same way as with rectangular intervals, spheri-
cal intervals are interval versions of spherical coordinates.
Thus, three intervals are defined, one for each spherical co-
ordinate:r, 6, and¢. In spherical coordinates,is the dis-
tance between a certain point and the surface origin. Also,
by definition, 8 is the angle between the projection of the
radius on the XZ plane and the X axis, ands the angle
between the radius and XZ plane.

The three spherical intervals are defined as follows:

R = [ro,7]
©® = [0, 0]
® = [do,¢1]

The region defined by these intervals is not cubic, but
has the form shown in Fig. 3. These spherical intervals
can be inserted in the inclusion function of the spherically-
described implicit function. If the resulting interval does
not include zero, the region defined by the spherical inter-
vals does not contain any part of the surface. Therefore,
the rectangulaK, Y andZ intervals have to be converted
to spherical®, ® andR intervals.

To find out the® bounds we have defined 9 possible
cases (see Fig. 4). These cases cover the whole angular
domain ([0,27]). In each of these different cases there is
a different solution for finding® bounds. Each square in
Fig. 4 indicates a square defined by the intervasndZ,
that is, a projection on the XZ plane of the 3D rectangular
region defined by, Y andZ. The numbers in the squares
identify the different cases.

Figure 5 shows how to obtain anglés and6, (©
bounds) in case 0. In this case:
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Figure 5.Determining® bounds for case 0

In the other case$y andd; are calculated in a similar
fashion. Angles are always defined in such a way that cubes
are totally enclosed by them as indicated in Fig. 5. This is
done to define a spherical interval which contains the cubic
one.

The ® bounds are only applicable to spherical co-
ordinates not cylindrical coordinates. To cover the whole
spherical spacej, and¢; need to be defined in only half
of the angular domain, that is,§s 7], sincet, and¢, are
already defined in [027] domain. Case 4 is eliminated
from the analysis, since this case has no solution because
it covers the whole domain. This case is dealt by always
accepting and subdividing it until other cases are found or
the last level is found, when it is then rejected. This is the
reason why only three different cases are necessary to fully
define® bounds.

The three cases are indicated in Fig. 6. Axis Fig.
6 is a rotating axis over XZ plane. Suppose that the cube
being considered is case 0 (Figures 4 and 5) and aase
(Fig. 6), caseda for short,¢y and¢; are calculated in the
following way (r; andr{ are not bounds foR):
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Figure 6.Three cases for determiniry bounds

Table 1. Voxelization times fogin(n-0)-sin(m-¢)—R=0

n=9 m=18 n=9, m=10 n=3, m=4
Res. Time Occ. Time Occ. Time Occ.
10243 1717t 23.8 123" 18, 49" 7.4
5123 37" 587 28" 445 13" 1.85
2563 8" 1.42 7 1.08 3" 0.46

6 = Vwo?+ 22 (—oorounding)t
i = o2+ 22 (+oo rounding)
do = atan(yo/rl) (—oo rounding)
¢ = atan(yi/rh) (+oo rounding)

Tsuggested rounding modes to guarantee numerical robustness.

IntervalR lower and upper bounds correspond respec-
tively to the minimal and maximal radius value in the 3D
region defined by the three rectangular intervals. These
maximal and minimal values are the distances between the
surface origin and the points of the 3D region defined by
the three rectangular intervals which are respectively the
nearest and the farthest to this origin.

Figure 7.sin(40)-sin(8¢)—R=0

Table 1 shows some voxelization times (in seconds)
and voxel occupancy (in millions of voxels) for the surface
given by the equatiorin(n-0) - sin(m-¢)—r=0 for dif-
ferent values of. andm and different 3D resolutions. One
of the voxelized objects can be seen in Figure 7. All vox-
elizations were generated on a laptop with a Pentium I
1.8 GHz processor. Voxel occupation (indicated@tc.”

fswapping occured.

columns) in Table 1 is given in millions of occupied voxels.

4 \Voxelization of Implicitly defined Cyclical
Parametric Surfaces

Representing cyclical parametric surfaces implicitly is not
a trivial task. Cyclical parametric surfaces generally have
angular parameters used to generate translations dependent
on these angles. The problem is that it is impossible to
determine an exact angle only based on the rectangular co-
ordinates in the implicit representation without any extra
hint to indicate in which cycle a certain part of the surface
is located. For this reason, cyclical parametric surfaces are
generally reduced to only one cycle when represented in
the implicit form.

Infinite implicit replication [12] is able to restore the
missing information in a quite simple way and at a quite
low cost. The case of an infinite helicoidal torus (a me-
chanical spring) is going to be used onwards to illustrate
and to explain the technique. The parametric equation of a
mechanical spring can be defined as shown in equation (3).

Tr =
y =
A =

(R+ acos¢)cosb
(R+ acos¢)sind 3
asin ¢ + %

This is the parametric equation of the torus with an
extra factor% added to the z coordinate. It is possible
to represent this surface implicitly by subtracting the same
factor from the z coordinate as shown in the implicit equa-
tion (4), given in cylindrical coordinates.

2 bo 2 2
(r—R)*+(z 477) a®=0 (4)

However, the obtained surface has only one cycle of
the infinite spring obtained with the parametric equation
(3). To reestablish the infinite other cycles, the single cycle
defined implicitly can be infinitely replicated using infinite
implicit replication. But joining the different replications of
this object implies interpenetration of the cyclical regions
which is not previewed in the infinite implicit replication
technique (it assumes that the replication region is unique,
not shared with any other region). The solution is to di-
vide the object into two subsets and replicate each subset
independently.



Figure 8. Voxelized implicitly represented mechanical
spring using replication

In the case of the mechanical spring above, each cy-
cle varies between-2 andg in relationship to the middle
of the replicated region (the “origin” of the cycle). The
equation of the replicated object with= 0.1, b = 0.7
and R = 0.7 is given in (5) and the voxelized object at a
resolution of 512 using recursive voxelization and interval
arithmetic is shown in Fig. 8.

A(r,0,2) = (r—R)*+[z—=b-(iat+2)] —a®
B(r,0,z) = (T—R)2+[z—b (ilg—i—%—% ]2—a2
F(r,0,z) = min(A(r,0,2),B(r,0,2)) =0 (5)
0 € [—m, |
Where, ) )
z =+ 2+ )+
in = (int)( b?) ig = (z’nt)(( +2b) 2)

This example clearly shows that infinite implicit repli-
cation can also be used to represent other cyclical paramet-
ric surfaces implicitly by proceeding as shown above.

5 Generalized Cylinders Voxelization

Generalized cylinders [3, 4, 5] are defined by arbitrary two-
dimensional contours and skeletons as opposed to the circle
sweep in which the contour is a circle. In these both cases
the normal vector of the plane containing the contour is
aligned with the tangent vector of the skeleton curve at the
point where the plane cuts the curve. In other words, the
plane containing the contour is always perpendicular to the
curve defining the sweep skeleton. A 2D contour in 3D
is here defined by using the intersection between a surface
and the plane perpendicular to the skeleton. If the surface
is implicit, the resulting generalized cylinder is implicit.

The voxelization of implicit generalized cylinders de-
fined in this way is an extension of an existing subdivision
[6] and voxelization method [11, 12] for implicit surfaces.
The extension proposed here is to include in the subdivision

Figure 9. Voxelized blending between two generalized
cylinders

process an extra dimension corresponding to the parametri-
cal variablet of a three-dimensional &ier curve describ-

ing the skeleton of the generalized cylinder. The subdivi-
sion is a recursive procedure that breaks a hypercube into
16 equal parts at each interaction (as opposed to 8 equal
parts of a cube in the three-dimensional case). Each of
these 16 resulting hypercubes are then tested to verify if
the swept surface is contained in the hypercube. If a hyper-
cube is known to not contain the surface it is abandoned,
otherwise it is further subdivided in other 16 hypercubes
of one-sixteenth of the size of the original hypercube. This
procedure continues until a certain desired number of levels
is reached.

Figure 9 shows the voxelization of a generalized
cylinder whose contour is two circles which gradually
blend together. Artifacts in the image resulted from wrong
normal calculation due to the under sampling of the para-
metrical variable.

6 Visualization Method

The visualization method used to generate images for this
article is based on high-resolution voxel spacet res-
olution). Voxels are stored in an octree, thus allowing
quite large discrete spaces without consuming a significant
amount of memory. Normal vectors are calculated during
the voxelization by evaluating the gradient in the middle
of the voxel and then normalizing it. A voxel, located at
the leaf octree level, is just a pointer to a structure contain-
ing the three normal vector components. Color, textures or
other information could also be stored as well. Higher oc-
tree level nodes contain only octree children pointers, when
they exist, or zero otherwise. All the voxels are considered
as points and rendered using an efficient BSP scheme to or
der the octants to display the voxels from back to front in
the painter’s algorithm fashion.

One of the goals of this experiment was to verify the
gain obtained with accelerated graphics cards in relation-



ship to a software solution using advanced features of re-
cent processors such as SIMD instructions. The conclusion
of this analysis was that the software solution described
here was slightly more efficient than using graphics cards
that calculate illumination and hidden surface elimination

in hardware. The SIMD instructions were responsible for a
40% optimization, while backface culling reduced the dis-

play time by roughly 50%.

The BSP ordering algorithm is based on the location
of the viewer, as generally done in BSP traversals, in re-
lationship to the middle splitting axis-aligned planes that
divide an octant in eight equal sized cubes in the octree.
The 3 Boolean values saying if the observer coordinates are
above or on the respective planes are then grouped in three
successive bits from right to left and stored in the variable
zyx The efficiency of the ordering algorithm comes from
its extreme simplicity and reduced number of instructions.
It uses an arrayofder) with 8 positions containing the in-
dex giving the real order of the octants in each level of the
octree. Every time the algorithm goes down one level, it
calculates the content of the array based on the value ob-
tained inzyxvariable. This is done by the following state-
ments:

order[ zyxxor 7]=0;
order[ zyxxor 6] =1;
order[ zyxxor 5]=2;
order[ zyxxor 4] =3;
order[ zyxxor 3]=4;
order[ zyxxor 2] =5;
order[ zyxxor 1] = 6;
order[ zyx ] =7,

The variablezyx in the way it is calculated can be
interpreted as the index of the octant where the viewer is
looking from. Thexor (exclusive or) allows obtaining the
back to front order as required.

7 Conclusion

We have shown in this article several technigues involv-
ing graphics using implicit surfaces with interval arithmetic
based recursive voxelization. The graphics are generated
using a unique algorithm based on voxels and point ren-
dering, where the voxels were previously obtained from
implicit surfaces voxelization. For portability purposes
OpenGL is only used to open the window and to transform
window to viewport coordinates, otherwise everything is
calculated in software. This display procedure is more effi-
cient than using accelerated graphics cards.

These techniques show the feasibility of the use of
interval arithmetic for efficient voxelization of implicit sur-
faces.

Voxelization is a quite powerful and simple tool that
may be used for a variety of applications besides the obvi-
ous ones already stressed in volume graphics, conversion
of implicit surfaces into polygons [8], ray tracing and ra-
diosity. The recursive voxelization is a divide and conquer

technique that can also be used for volume calculation, in-
tersections calculations between implicit surfaces, collision
detection, implicit surfaces bounding box calculation, im-
plicit surfaces tiling or scan-conversion, etc.
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